外星植物会是什么颜色
外星植物想象图
与其坐等外星生命光临地球,不如主动寻找它们——寻找地外生命,早已不再是科幻小说虚构的故事,也不只是UFO迷才会关心的领域,而是许多科学家当前的研究任务。也许在现阶段,我们很难找到发展出高级文明的智慧生命,但可以把目标锁定到与基础生命过程相关的物理及化学标志(即生物标记,biosignatures)。迄今为止,天文学家已发现了200多颗围绕其他恒星旋转的行星(太阳系外行星,extrasolarplanet),虽然科学家还无法说出哪几颗行星孕育着生命,但我相信,发现地外生命只是时间问题。2007年7月,天文学家在观察一颗行星时,发现恒星光线在穿过这颗行星的大气层时有些异常,而最终分析结果让他们惊喜不已:这颗行星周围存在水蒸气。现在,世界各地的航天机构都在开发新型望远镜,通过观察行星光谱,在与地球大小相似的行星上搜寻生命证据。
这里不得不提光合作用(Photosynthesis),因为这一众所周知的生命过程,能产生非常明显的生物标记。在地球上,光合作用几乎是所有生命的基础:除了深海热液喷口周围以热量和甲烷为生的生物,地面生态系统中的所有生命都得依靠阳光才能生存下去。而在其他行星上,光合作用发生的几率同样很高。
光合作用产生的生物标记分为两类:一是生命活动产生的气体及其衍生物,如氧气和臭氧;二是与某种色素相关的表面颜色,就像叶绿素(chlorophyll)与绿色的关系。实际上,在地外行星上寻找“生命色素”的想法由来已久。一个世纪前,火星的季节性变暗引起了天文学家的注意,他们猜测这是由植物生长导致。为了证实这个想法,他们开始研究火星表面反射光线的光谱,希望从中发现绿色植物存在的证据。但在英国著名科幻作家H.G.威尔斯(H.G.Wells)看来,天文学家们的研究策略存在一个明显缺陷。他在科幻小说《大战火星人》(TheWaroftheWorlds)中写道:“在火星植物王国里,占据统治地位的不是绿色,而是鲜艳的血红色。”虽然火星上没有植物早已成为共识(火星变暗是由沙尘暴引起的),威尔斯的观点却不无道理:在其他行星上,光合生物(photosyntheticorganism)可能并非绿色。
即便在地球上,光合生物的颜色也多种多样。一些陆生植物的叶子是红色的,水生海藻和光合细菌更具有彩虹般的缤纷色彩;紫色细菌也不少见,它们不仅吸收阳光中的可见光,还能利用红外线。那么,在地外行星上,植物们的主流色彩是什么?当我们看见它们时,又该如何辨认?这些问题的答案,取决于照射到植物表面的光线类型(而光线类型又取决于恒星类型和行星大气层的组成,因为恒星发出光线后,要穿过行星大气层才能抵达植物表面)。
[分页]
捕捉阳光
对于大多数地球生物,光合作用实在太重要了:植物或微生物吸收阳光,通过光合作用合成有机分子,释放氧气,其他生物必须直接或间接地利用光合作用的产物,才能维持生命活动。植物或微生物究竟是如何捕捉阳光,将太阳能转化为化学能的?
要了解光合作用在其他行星上是怎么发生的,我们首先得弄清楚地球上光合作用的具体机制。在地球表面,阳光的能谱(energyspectrum)会在蓝色和绿色之间达到峰值,这让科学家一直大感困惑:为什么植物会反射绿色光线,浪费掉阳光中最易得到的部分?(物体反射某种颜色的光线,就会呈现某种颜色。)原因就在于,光合作用并不依赖阳光的总能量,而与单个光子含有的能量以及光线中的光子数量有关。
蓝色光子携带的能量比红色光子多,而太阳发出的红色光子数量则要多一些。植物因为单个光子的能量优势而吸收蓝色光子,因为数量优势而吸收红色光子。相对而言,绿色光子在能量和数量上都不占优势,植物就很少吸收它们。
将一个碳原子固定到一个简单的糖分子内,是光合作用的基本过程。这个过程要顺利完成,至少需要8个光子。4个光子会“撕开”两个水分子的4条氢氧键(一个光子撕开一条),释放4个自由电子,生成1个氧分子;同时,这4个光子还得分别匹配至少1个额外光子,以参加下一步反应:生成糖分子。而且,每个光子的能量不能太低。
植物捕获阳光的方式堪称自然界的奇迹。以叶绿素为代表的光合色素宛如一个天线阵,其中每根“天线”都可以捕获某种波长的光子:叶绿素主要吸收红色和蓝色光子,类胡萝卜素(正是这种色素使秋天的树叶呈现鲜艳的红色和黄色)也吸收蓝色光子,但两种色素吸收的蓝色光子并不完全相同。所有光子的能量都会被输送到位于反应中心的特殊叶绿素分子上——在这里,水分子被分解,释放出氧气。
色素分子选择何种颜色的光子,取决于能量的输送方式。只有获得一个红色光子,或以其他形式得到与红色光子相当的能量,反应中心的分子复合体才能启动化学反应。为了充分利用蓝色光子,色素分子们必须相互协作,降低蓝色光子的能量(把它变为红色),正如一系列变压器,将高压线中的100,000伏电压降低到220伏,才能为家用电器供电。一个蓝色光子击中一个吸收蓝光的色素分子,激发分子中的一个电子时,“降压”反应便开始了;当受到激发的电子回到初始能量状态,蕴藏其中的能量便会释放出去。由于在电子恢复能量状态的过程中,会发生振动并产生热量,释放的能量总是小于当初所吸收的能量。
电子并非以光子的形式释放能量,而是利用电反应,将能量传递给另一个色素分子。这个色素分子会进一步降低蓝色光子中的能量,直到高能的蓝色光子被转换为低能状态的红色光子。利用同样的方式,这一系列色素也能将青色、绿色或黄色光子转换成红色光子。流程终端的反应中心只能吸收能量最低的光子,而在地球表面,红色光子是可见光波段中数量最多、能量最低的光子。
但对水生光合生物来说,红色光子的数量不一定是最充足的。水、水中的各种物质和水生生物本身,都有滤光作用,因此光线组成会随水深而变化。在海洋里,生活在不同深度的生物会拥有不同的体色。浅水层生物的色素适合吸收穿过水层的光子,藻类和蓝细菌就可以利用藻胆素(phycobilins),吸收绿光和黄光;不产氧细菌(Anoxygenicbacteria)的细菌叶绿素则可以吸收红外和近红外光——只有这两种光线能穿透厚厚的水层,到达黑暗的水底。
一般说来,在光线较暗的环境中,生物体的生长速度都很慢,因为它们要付出更多的努力,才能捕捉到那少得可怜的光线。在光线充足的地表,植物没有必要制造多余的色素,因此它们可以“挑剔”地选择吸收某种光线。这样的进化原则可能也适用于其他行星。
正如水生生物适应水的滤光作用一样,陆生生物也适应了大气的滤光作用。在地球大气层顶端,黄色光子(波长为560~590纳米)的数量最多。随着海拔降低,波长较长的光子逐渐减少,短波长光子更是急剧减少。阳光透过上层大气时,水蒸气吸收波长大于700纳米的红外线,氧分子吸收波长为687和761纳米的光线(即氧气的吸收谱线)。在平流层,臭氧(O3)会吸收大量的紫外线以及少量可见光。
总而言之,大气层设置了一系列“窗户”,阳光要穿过这些窗户,才能抵达地面。“窗户”为可见光波段设定了范围:波长较短的称为蓝色端,是由阳光中的短波长光子数量锐减,以及臭氧层大量吸收紫外线而形成的;波长较长的则被称为红色端,由氧气的吸收谱线形成。由于臭氧对可见光区内的多种光线都有吸收作用,各种光子的数量也发生了变化,原本数量最多的是黄色光子,现在则为红色光子(波长约为685纳米)。
在很大程度上,植物的吸收光谱由氧气决定,而这些氧气又是植物释放出来的。最早的光合生物在地球上出现时,大气中氧气浓度极低,因此这些生物用于捕捉阳光的色素,必然不同于叶绿素(如果是叶绿素,植物光合作用就会释放大量氧气)。随着时间流逝,光合作用改变了大气组成,叶绿素也就成为了植物的最佳选择。
根据化石记录,科学家推断光合作用产生于距今34亿年前。不过也有一些化石显示,光合作用可能在更早以前就出现了。早期光合生物只能在水下生存,因为水是很好的溶剂,有利于生化反应的进行,而且它还能为生物遮挡阳光中的紫外线。在臭氧层还未形成的时候,水对生物的这种保护作用至关重要。最早的光合生物是吸收红外线的水下细菌,它们体内化学反应的主要反应物是氢、硫化氢或铁,由于水没有参与反应,这些细菌不会释放氧气。到27亿年前,能利用光合作用制造氧气的蓝细菌(cyanobacteria)出现了,地球大气层中的氧气浓度逐渐升高,臭氧层也开始形成——这给红藻和褐藻的出现创造了条件。随着臭氧层的日渐完善,紫外线对浅水层生物不再构成威胁时,绿藻便进化出来,它们没有藻胆素,更适应阳光下的生活。又过了20亿年,氧气浓度进一步提高,绿藻终于进化成为陆生植物。
自此以后,植物数量便开始爆炸式增长,植株个体也越来越复杂——从地表的苔藓和地钱,到直冲云霄的参天大树,因为个体越高大,越利于捕捉阳光,也能更好地适应特殊气候。由于拥有圆锥形树冠,即便在太阳照射角度较低的高海拔地区,松树也能获得充足的阳光;利用花青素(anthocyanin),喜阴植物还可以抵